TY - GEN
T1 - Deep Recurrent Neural Networks with Attention Mechanisms for Respiratory Anomaly Classification
AU - Wall, Conor
AU - Zhang, Li
AU - Yu, Yonghong
AU - Mistry, Kamlesh
N1 - Funding Information:
ACKNOWLEDGMENT We would like to acknowledge the funding support received from the Purposeful Health Growth Accelerator project funded by Research England.
Publisher Copyright:
© 2021 IEEE.
PY - 2021/7/18
Y1 - 2021/7/18
N2 - In recent years, a variety of deep learning techniques and methods have been adopted to provide AI solutions to issues within the medical field, with one specific area being audio-based classification of medical datasets. This research aims to create a novel deep learning architecture for this purpose, with a variety of different layer structures implemented for undertaking audio classification. Specifically, bidirectional Long Short-Term Memory (BiLSTM) and Gated Recurrent Units (GRU) networks in conjunction with an attention mechanism, are implemented in this research for chronic and non-chronic lung disease and COVID-19 diagnosis. We employ two audio datasets, i.e. the Respiratory Sound and the Coswara datasets, to evaluate the proposed model architectures pertaining to lung disease classification. The Respiratory Sound Database contains audio data with respect to lung conditions such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, while the Coswara dataset contains coughing audio samples associated with COVID-19. After a comprehensive evaluation and experimentation process, as the most performant architecture, the proposed attention BiLSTM network (A-BiLSTM) achieves accuracy rates of 96.2% and 96.8% for the Respiratory Sound and the Coswara datasets, respectively. Our research indicates that the implementation of the BiLSTM and attention mechanism was effective in improving performance for undertaking audio classification with respect to various lung condition diagnoses.
AB - In recent years, a variety of deep learning techniques and methods have been adopted to provide AI solutions to issues within the medical field, with one specific area being audio-based classification of medical datasets. This research aims to create a novel deep learning architecture for this purpose, with a variety of different layer structures implemented for undertaking audio classification. Specifically, bidirectional Long Short-Term Memory (BiLSTM) and Gated Recurrent Units (GRU) networks in conjunction with an attention mechanism, are implemented in this research for chronic and non-chronic lung disease and COVID-19 diagnosis. We employ two audio datasets, i.e. the Respiratory Sound and the Coswara datasets, to evaluate the proposed model architectures pertaining to lung disease classification. The Respiratory Sound Database contains audio data with respect to lung conditions such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, while the Coswara dataset contains coughing audio samples associated with COVID-19. After a comprehensive evaluation and experimentation process, as the most performant architecture, the proposed attention BiLSTM network (A-BiLSTM) achieves accuracy rates of 96.2% and 96.8% for the Respiratory Sound and the Coswara datasets, respectively. Our research indicates that the implementation of the BiLSTM and attention mechanism was effective in improving performance for undertaking audio classification with respect to various lung condition diagnoses.
KW - attention mechanism
KW - audio classification
KW - bidirectional Recurrent Neural Network
KW - COVID
KW - deep learning
KW - Long Short-Term Memory
KW - lung disease
UR - http://www.scopus.com/inward/record.url?scp=85116420408&partnerID=8YFLogxK
U2 - 10.1109/IJCNN52387.2021.9533966
DO - 10.1109/IJCNN52387.2021.9533966
M3 - Conference contribution
AN - SCOPUS:85116420408
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - IJCNN 2021 - International Joint Conference on Neural Networks, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 International Joint Conference on Neural Networks, IJCNN 2021
Y2 - 18 July 2021 through 22 July 2021
ER -