Development of an Ultrasonic Airflow Measurement Device for Ducted Air

Andrew Raine, Nauman Aslam, Chris Underwood, Sean Danaher

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)
15 Downloads (Pure)


In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers.
Original languageEnglish
Pages (from-to)10705-10722
Issue number5
Publication statusPublished - 6 May 2015


Dive into the research topics of 'Development of an Ultrasonic Airflow Measurement Device for Ducted Air'. Together they form a unique fingerprint.

Cite this