Development of antibacterial steel surfaces through laser texturing

Victor M. Villapún, A. P. Gomez, W. Wei, L. G. Dover, Jonathan R. Thompson, T. Barthels, J. Rodriguez, S. Cox, S. González*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
45 Downloads (Pure)


The aim of the present study was to develop novel antibacterial touch surfaces through the laser texturing optimization of stainless steel. A wide range of laser fluence (2.11 J/cm2-5.64 J/cm2) and scanning interval (10 μm-30 μm) parameters were explored. The impact of surfaces with different patterns, wettability, and oxidation states on the antimicrobial behavior of Escherichia coli K-12 and biofilm hyper-producing Acinetobacter baumannii MAR002 was assessed. Modification of laser input enacted topographical changes with high scanning intervals leading to ordered surface patterns, while increasing the laser fluence to 5.64 J/cm2 created larger and less ordered plateaus and valleys. Texturing also drove a transition from a hydrophilic starting surface with a contact angle of 80.67° ± 3.35° to hydrophobic (138°-148°). Antimicrobial analysis and bioluminescence assays of E. coli, alongside biofilm forming test through A. baumannii MAR002 indicated the ability of laser texturing to produce effective bactericidal touch surfaces. No simple correlation was found between wettability and bacterial behavior, revealing that proliferation is dependent on roughness, oxidation, and wettability. For the conditions selected in this study, a laser fluence of 5.64 J/cm2 and a scanning interval of 10 μm showcased the lowest amount of recovered bacteria after 30 min.

Original languageEnglish
Article number091108
Number of pages10
JournalAPL Materials
Issue number9
Early online date22 Sept 2020
Publication statusPublished - Sept 2020


Dive into the research topics of 'Development of antibacterial steel surfaces through laser texturing'. Together they form a unique fingerprint.

Cite this