Direct Evidence of Magnetic Reconnection Onset via the Tearing Instability

Mayur R. Bakrania*, Jonathan Rae, Andrew P. Walsh, Daniel Verscharen, Andy W. Smith, Colin Forsyth, Anna Tenerani

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
23 Downloads (Pure)

Abstract

Magnetic reconnection is a sporadic process responsible for energy release in space and laboratory plasmas. It is believed that the tearing mode instability may be responsible for the onset of reconnection in the magnetotail. However, due to its elusive nature, there is an absence of in-situ observations of the tearing instability prior to magnetic reconnection in our nearest natural plasma laboratory. Using neural network outlier detection methods in conjunction with Cluster spacecraft data, we find unique electron pitch angle distributions that are consistent with simulation predictions of the tearing instability and the subsequent evolution of plasma electrons and reconnection. We evaluate tearing stability criterion for the events identified via our neural network outlier method, and find signatures of magnetic reconnection minutes after the majority of tearing observations. Our analysis of the tearing instability provides new insights into the fundamental understanding of the mechanism responsible for reconnection, a process that is ubiquitous in different astrophysical plasma regimes across the Universe and in laboratory experiments on Earth.
Original languageEnglish
Pages (from-to)869491
JournalFrontiers in Astronomy and Space Sciences
Volume9
DOIs
Publication statusPublished - 14 Jul 2022

Keywords

  • space plasma environments
  • magnetic reconnection
  • tearing instability
  • neural network techniques
  • outlier detection

Fingerprint

Dive into the research topics of 'Direct Evidence of Magnetic Reconnection Onset via the Tearing Instability'. Together they form a unique fingerprint.

Cite this