Dynamic analysis of a flexible rotor supported by ball bearings with damping rings based on FEM and lumped mass theory

Haimin Zhu, Weifang Chen*, Rupeng Zhu, Li Zhang, Jie Gao, Meijun Liao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A dynamic model of a flexible rotor supported by ball bearings with rubber damping rings was proposed by combining the finite element and the mass-centralized method. In the proposed model, the rotor was built with the Timoshenko beam element, while the supports and bearing outer rings were modelled by the mass-centralized method. Meanwhile, the influences of the rotor’s gravity, unbalanced force and nonlinear bearing force were considered. The governing equations were solved by precise integration and the Runge-Kutta hybrid numerical algorithm. To verify the correctness of the modelling method, theoretical and experimental analysis is carried out by a rotor-bearing test platform, where the error rate between the theoretical and experimental studies is less than 10%. Besides that, the influence of the rubber damping ring on the dynamic properties of the rotor-bearing coupling system is also analyzed. The conclusions obtained are in agreement with the real-world deployment. On this basis, the bifurcation and chaos behaviors of the coupling system were carried out with rotational speed and rubber damping ring’s stiffness. The results reveal that as rotational speed increases, the system enters into chaos by routes of crisis, quasi-periodic and intermittent bifurcation. However, the paths of crisis, quasi-periodic bifurcation, and Hopf bifurcation to chaos were detected under the parameter of rubber damping ring’s stiffness. Additionally, the bearing gap affects the rotor system’s dynamic characteristics. Moreover, the excessive bearing gap will make the system’s periodic motion change into chaos, and the rubber damping ring’s stiffness has a substantial impact on the system motion.
Original languageEnglish
Pages (from-to)3684–3701
Number of pages18
JournalJournal of Central South University
Volume274
Issue number12
Early online date12 Nov 2020
DOIs
Publication statusPublished - 1 Dec 2020

Fingerprint Dive into the research topics of 'Dynamic analysis of a flexible rotor supported by ball bearings with damping rings based on FEM and lumped mass theory'. Together they form a unique fingerprint.

Cite this