Dynamics of internetwork chromospheric fibrils: Basic properties and magnetohydrodynamic kink waves

Krishna Mooroogen, Richard Morton, Vasco Henriques

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)
16 Downloads (Pure)


Aims. Current observational instruments are now providing data with the necessary temporal and spatial cadences required to examine highly dynamic, fine-scale magnetic structures in the solar atmosphere. Using the spectroscopic imaging capabilities of the Swedish Solar Telescope, we aim to provide the first investigation on the nature and dynamics of elongated absorption features (fibrils) observed in Hα in the internetwork.
Methods. We observe and identify a number of internetwork fibrils, which form away from the kilogauss, network magnetic flux, and we provide a synoptic view on their behaviour. The internetwork fibrils are found to support wave-like behaviour, which we interpret as magnetohydrodynamic (MHD) kink waves. The properties of these waves, that is, amplitude, period, and propagation speed, are measured from time-distance diagrams and we attempt to exploit them via magneto-seismology in order to probe the variation of plasma properties along the wave-guides.
Results. We found that the Internetwork (IN) fibrils appear, disappear, and re-appear on timescales of tens of minutes, suggesting that they are subject to repeated heating. No clear photospheric footpoints for the fibrils are found in photospheric magnetograms or Hα wing images. However, we suggest that they are magnetised features as the majority of them show evidence of supporting propagating MHD kink waves, with a modal period of 120 s. Additionally, one IN fibril is seen to support a flow directed along its elongated axis, suggesting a guiding field. The wave motions are found to propagate at speeds significantly greater than estimates for typical chromospheric sound speeds. Through their interpretation as kink waves, the measured speeds provide an estimate for local average Alfvén speeds. Furthermore, the amplitudes of the waves are also found to vary as a function of distance along the fibrils, which can be interpreted as evidence of stratification of the plasma in the neighbourhood of the IN fibril.
Original languageEnglish
Article numberA46
Number of pages13
JournalAstronomy and Astrophysics
Publication statusPublished - 9 Nov 2017


Dive into the research topics of 'Dynamics of internetwork chromospheric fibrils: Basic properties and magnetohydrodynamic kink waves'. Together they form a unique fingerprint.

Cite this