Abstract
We examine statistical properties of integrable turbulence in the defocusing and focusing regimes of one-dimensional small-dispersion nonlinear Schrödinger equation (1D-NLSE). Specifically, we study the 1D-NLSE evolution of partially coherent waves having Gaussian statistics at time t=0. Using short time asymptotic expansions and taking advantage of the scale separation in the semiclassical regime we obtain a simple explicit formula describing an early stage of the evolution of the fourth moment of the random wave field amplitude, a quantitative measure of the "tailedness" of the probability density function. Our results show excellent agreement with numerical simulations of the full 1D-NLSE random field dynamics and provide insight into the emergence of the well-known phenomenon of heavy (respectively, low) tails of the statistical distribution occurring in the focusing (respectively, defocusing) regime of 1D-NLSE.
Original language | English |
---|---|
Article number | 032212 |
Number of pages | 10 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 100 |
Issue number | 3 |
DOIs | |
Publication status | Published - 19 Sep 2019 |