Abstract
Background
Nitrate (NO3−) supplementation has been reported to lower motor unit (MU) firing rate (MUFR) during dynamic resistance exercise; however, its impact on MU activity during isometric and ischemic exercise is unknown.
Purpose
To assess the effect of NO3− supplementation on knee extensor MU activities during brief isometric contractions and a 3 min sustained contraction with blood flow restriction (BFR).
Methods
Sixteen healthy active young adults (six females) completed two trials in a randomized, double-blind, crossover design. Trials were preceded by 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Intramuscular electromyography was used to determine the M. vastus lateralis MU potential (MUP) size, MUFR and near fibre (NF) jiggle (a measure of neuromuscular stability) during brief (20 s) isometric contractions at 25% maximal strength and throughout a 3 min sustained BFR isometric contraction.
Results
Plasma nitrite (NO2−) concentration was elevated after NIT compared to PLA (475 ± 93 vs. 198 ± 46 nmol L−1, p < 0.001). While changes in MUP area, NF jiggle and MUFR were similar between NIT and PLA trials (all p > 0.05), MUP duration was shorter with NIT compared to PLA during brief isometric contractions and the sustained ischemic contraction (p < 0.01). In addition, mean MUP duration, MUP area and NF jiggle increased, and MUFR decreased over the 3 min sustained BFR isometric contraction for both conditions (all p < 0.05).
Conclusions
These findings provide insight into the effect of NO3− supplementation on MUP properties and reveal faster MUP duration after short-term NO3− supplementation which may have positive implications for skeletal muscle contractile performance.
Nitrate (NO3−) supplementation has been reported to lower motor unit (MU) firing rate (MUFR) during dynamic resistance exercise; however, its impact on MU activity during isometric and ischemic exercise is unknown.
Purpose
To assess the effect of NO3− supplementation on knee extensor MU activities during brief isometric contractions and a 3 min sustained contraction with blood flow restriction (BFR).
Methods
Sixteen healthy active young adults (six females) completed two trials in a randomized, double-blind, crossover design. Trials were preceded by 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Intramuscular electromyography was used to determine the M. vastus lateralis MU potential (MUP) size, MUFR and near fibre (NF) jiggle (a measure of neuromuscular stability) during brief (20 s) isometric contractions at 25% maximal strength and throughout a 3 min sustained BFR isometric contraction.
Results
Plasma nitrite (NO2−) concentration was elevated after NIT compared to PLA (475 ± 93 vs. 198 ± 46 nmol L−1, p < 0.001). While changes in MUP area, NF jiggle and MUFR were similar between NIT and PLA trials (all p > 0.05), MUP duration was shorter with NIT compared to PLA during brief isometric contractions and the sustained ischemic contraction (p < 0.01). In addition, mean MUP duration, MUP area and NF jiggle increased, and MUFR decreased over the 3 min sustained BFR isometric contraction for both conditions (all p < 0.05).
Conclusions
These findings provide insight into the effect of NO3− supplementation on MUP properties and reveal faster MUP duration after short-term NO3− supplementation which may have positive implications for skeletal muscle contractile performance.
Original language | English |
---|---|
Pages (from-to) | 1683–1693 |
Number of pages | 11 |
Journal | European Journal of Applied Physiology |
Volume | 122 |
Issue number | 7 |
Early online date | 23 Apr 2022 |
DOIs | |
Publication status | Published - Jul 2022 |
Externally published | Yes |