Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD

Andrew Clayton, Mark Baker, Shumalia Babar, R. Grilli, P. N. Gibson, Giray Kartopu, David Lamb, Vincent Barrioz, Stuart Irvine

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
9 Downloads (Pure)

Abstract

Ultra-thin CdTe:As/Cd1-xZnxS photovoltaic solar cells with an absorber thickness of 0.5 μm were deposited by metal-organic chemical vapour deposition on indium tin oxide coated boro-aluminosilicate substrates. The Zn precursor concentration was varied to compensate for Zn leaching effects after CdCl2 activation treatment. Analysis of the solar cell composition and structure by X-ray photoelectron spectroscopy depth profiling and X-ray diffraction showed that higher concentrations of Zn in the Cd1-xZnxS window layer resulted in suppression of S diffusion across the CdTe/Cd1-xZnxS interface after CdCl2 activation treatment. Excessive Zn content in the Cd1-xZnxS alloy preserved the spectral response in the blue region of the solar spectrum, but increased series resistance for the solar cells. A modest increase in the Zn content of the Cd1-xZnxS alloy together with a post-deposition air anneal resulted in an improved blue response and an enhanced open circuit voltage and fill factor. This device yielded a mean efficiency of 8.3% over 8 cells (0.25 cm2 cell area) and best cell efficiency of 8.8%.
Original languageEnglish
Pages (from-to)244-252
JournalMaterials Chemistry and Physics
Volume192
Early online date25 Jan 2017
DOIs
Publication statusPublished - 1 May 2017

Fingerprint

Dive into the research topics of 'Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD'. Together they form a unique fingerprint.

Cite this