TY - JOUR
T1 - Effects of irradiation of ZnO/CdS/Cu2ZnSnSe4/Mo/glass solar cells by 10 MeV electrons on photoluminescence spectra
AU - Sulimov, M.a.
AU - Sarychev, M.n.
AU - Yakushev, M.v.
AU - Márquez-prieto, J.
AU - Forbes, I.
AU - Ivanov, V.yu.
AU - Edwards, P.r.
AU - Mudryi, A.v.
AU - Krustok, J.
AU - Martin, R.w.
N1 - Funding Information:
The research was supported by the Ministry of Science and Higher Education of the Russian Federation (topic “Spin” № АААА-А18-118020290104-2 ) and the European Union through the European Regional Development Fund, Project TK141 .
Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/1
Y1 - 2021/1
N2 - Solar cells with the structure ZnO/CdS/Cu 2ZnSnSe 4/Mo/glass were studied by photoluminescence (PL) before and after irradiation with a dose of 1.8 × 10 15 cm −2 and then 5.4 × 10 15 cm −2 of 10 MeV electrons carried out at 77 K in liquid nitrogen bath. The low temperature PL spectra before irradiation revealed two bands, a broad and asymmetrical dominant band at 0.94 eV from the CZTSe layer and a lower intensity high energy band (HEB) at 1.3 eV, generated by defects in the CdS buffer layer. Analysis of the excitation intensity and temperature dependencies suggested that the dominant band is free-to-bound (FB): the recombination of free electrons with holes localised at acceptors whose energy levels are affected by potential fluctuations of the valence band due to high concentrations of randomly distributed charged defects. Irradiation did not induce any new band in the examined spectral range (from 0.5 μm to 1.65 μm) but reduced the intensity of both bands in the PL spectra measured at 77 K without warming the cells. The higher the dose the greater was the reduction. After this the cells were warmed to 300 K and moved to a variable temperature cryostat to measure temperature dependencies of the PL spectra. After irradiation the red shift rate of the FB band with temperature rise was found to increase. Electrons displace atoms in the lattice creating primary defects: interstitials and vacancies. These defects recombine during and shortly after irradiation forming secondary defect complexes which work as deep non-radiative traps of charge carriers reducing the PL intensity and increasing the rate of the temperature red shift. Irradiation did not affect the mean depth of the band tails estimated from the shape of the low energy side of the dominant PL band.
AB - Solar cells with the structure ZnO/CdS/Cu 2ZnSnSe 4/Mo/glass were studied by photoluminescence (PL) before and after irradiation with a dose of 1.8 × 10 15 cm −2 and then 5.4 × 10 15 cm −2 of 10 MeV electrons carried out at 77 K in liquid nitrogen bath. The low temperature PL spectra before irradiation revealed two bands, a broad and asymmetrical dominant band at 0.94 eV from the CZTSe layer and a lower intensity high energy band (HEB) at 1.3 eV, generated by defects in the CdS buffer layer. Analysis of the excitation intensity and temperature dependencies suggested that the dominant band is free-to-bound (FB): the recombination of free electrons with holes localised at acceptors whose energy levels are affected by potential fluctuations of the valence band due to high concentrations of randomly distributed charged defects. Irradiation did not induce any new band in the examined spectral range (from 0.5 μm to 1.65 μm) but reduced the intensity of both bands in the PL spectra measured at 77 K without warming the cells. The higher the dose the greater was the reduction. After this the cells were warmed to 300 K and moved to a variable temperature cryostat to measure temperature dependencies of the PL spectra. After irradiation the red shift rate of the FB band with temperature rise was found to increase. Electrons displace atoms in the lattice creating primary defects: interstitials and vacancies. These defects recombine during and shortly after irradiation forming secondary defect complexes which work as deep non-radiative traps of charge carriers reducing the PL intensity and increasing the rate of the temperature red shift. Irradiation did not affect the mean depth of the band tails estimated from the shape of the low energy side of the dominant PL band.
UR - http://www.scopus.com/inward/record.url?scp=85088740104&partnerID=8YFLogxK
U2 - 10.1016/j.mssp.2020.105301
DO - 10.1016/j.mssp.2020.105301
M3 - Article
SN - 1369-8001
VL - 121
JO - Materials Science in Semiconductor Processing
JF - Materials Science in Semiconductor Processing
M1 - 105301
ER -