Efficient Sparse Representation for Learning With High-Dimensional Data

Jie Chen, Shengxiang Yang*, Zhu Wang, Hua Mao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact in several fields, such as image processing, computer vision and pattern recognition. Learning sparse representations is often computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio during iterative computations. In this paper, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called approximated local linear representation with symmetric constraints (ALLRSC), further obtains all symmetric sparse representation results with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the sparsity ratio during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.
Original languageEnglish
Pages (from-to)1-15
Number of pages15
JournalIEEE Transactions on Neural Networks and Learning Systems
Early online date25 Oct 2021
DOIs
Publication statusE-pub ahead of print - 25 Oct 2021

Fingerprint

Dive into the research topics of 'Efficient Sparse Representation for Learning With High-Dimensional Data'. Together they form a unique fingerprint.

Cite this