Abstract
A new phenomenon, electric field enhanced adsorption and diffusion of lithium, magnesium and aluminum ions in a MoS2 monolayer, was investigated using density functional theory in this study. With the electric field increased from 0 to 0.8 V/Å, the adsorption energies of the Li, Mg and Al atoms in the MoS2 monolayer were decreased from −2.01 to −2.49 eV, from −0.80 to −1.28 eV, and −2.71 to −3.01 eV, respectively. The corresponding diffusion barriers were simultaneously decreased from 0.23 to 0.08 eV, from 0.15 to 0.10 eV, and 0.24 to 0.21 eV for the Li, Mg and Al ions, respectively. We concluded that the external electric field can increase the charging speed of rechargeable ion batteries based on the MoS2 anode materials.
Original language | English |
---|---|
Pages (from-to) | 392-397 |
Journal | Materials Chemistry and Physics |
Volume | 183 |
Early online date | 22 Aug 2016 |
DOIs | |
Publication status | Published - 1 Nov 2016 |
Keywords
- Monolayers
- ab initio calculations
- Diffusion
- Adsorption