Energy invariance in capillary systems

Elfego Ruiz-Gutierrez, Jian Guan, Ben Xu, Glen McHale, Gary Wells, Rodrigo Ledesma-Aguilar

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
29 Downloads (Pure)


We demonstrate the continuous translational invariance of the energy of a capillary surface in contact with reconfigurable solid boundaries. We present a theoretical approach to find the energy-invariant equilibria of spherical capillary surfaces in contact with solid boundaries of arbitrary shape and examine the implications of dynamic frictional forces upon of a reconfiguration of the boundaries. Experimentally, we realise our ideas by manipulating the position of a droplet in a wedge geometry using lubricant-impregnated solid surfaces, which eliminate the contact-angle hysteresis and provide a test bed for quantifying dissipative losses out of equilibrium. Our experiments show that dissipative energy losses for an otherwise energy-invariant reconfiguration are relatively small, provided that the actuation timescale is longer than the typical relaxation timescale of the capillary surface. We discuss the wider applicability of our ideas as a pathway for liquid manipulation at no potential energy cost in low-pinning, low-friction situations.
Original languageEnglish
Pages (from-to)218003
JournalPhysical Review Letters
Issue number21
Publication statusPublished - 26 May 2017


Dive into the research topics of 'Energy invariance in capillary systems'. Together they form a unique fingerprint.

Cite this