Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber

Jinhui Yuan, Xinzhu Sang, Qiang Wu, Guiyao Zhou, Feng Li, Xian Zhou, Chongxiu Yu, Kuiru Wang, Binbin Yan, Ying Han, Hwa Yaw Tam, Ping-kong Alexander Wai

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

We demonstrate experimentally an enhanced intermodal four-wave mixing (FWM) process through coupling positively chirped femtosecond pulses into the deeply normal dispersion region of the fundamental mode of an in-house fabricated photonic crystal fiber (PCF). In the intermodal phase-matching scheme, the energy of the pump waves at 800 nm in the fundamental mode is efficiently converted into the anti-Stokes waves around 553 nm and the Stokes waves within the wavelength range of 1445–1586 nm in the second-order mode. The maximum conversion efficiency of Nas and Ns of anti-Stokes and Stokes waves can be up to 21% and 16%, respectively. The Stokes frequency shift Ω is 5580  cm−1. The fiber bending and intermodal walk-off effect of pulses do not have significant influence on the nonlinear optical process.
Original languageEnglish
Pages (from-to)1338-1341
JournalOptics Letters
Volume40
Issue number7
DOIs
Publication statusPublished - 1 Apr 2015

Fingerprint

Dive into the research topics of 'Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber'. Together they form a unique fingerprint.

Cite this