@inproceedings{dac40351aded45129bfbb4526fca2f42,
title = "Evaluation of Fracture Energy of Aluminium Alloy 1050-F and Carbon Steel EN - 3 (~1015) 0.15% C at Different Temperatures Gradient",
abstract = "The present study examined the mechanical properties of pure aluminium as well as carbon steel by evaluating the effects of temperature gradient on the impact strength of carbon steel as well as an aluminium alloy following ASTM A370 standard. Pure aluminium (1050-F) and mild steel of 0.15% C (EN-3(~1015) were the specific materials used. The impact test is used in this study to evaluate the material toughness and its notch sensitivity. The test determines the toughness or impact strength of a material in the presence of a notch and rapid loading condition per ASTM E23 standard. The test is vital for the investigation of material{\textquoteright}s mechanical properties, materials such as ceramics, polymers, composites, and metals can be tested with this method. The level of the fracture determines the quantity of energy the material store during the fracturing process. Hence, during this present test materials or specimens used were subjected to various temperatures gradient. The testing temperatures for both specimens were from –50 °C to 125 °C with a step of 25 °C. To determine the impact strength of each material at defined temperatures, Liquid Nitrogen, Methanol, and boiling water at 100 °C were mixed and used to get the specimens to below and above 0 °C. The specimens were dipped into the mixture for 2 min and then removed with care and taken to the testing machine. The observations were documented in a tabular form. It was revealed that Aluminium is more malleable than steel while steel is more ductile than aluminium. The ductile to brittle transition temperature was found to be 36.33 °C and 49.34 °C for aluminium and EN3 specimen, respectively. The fractured surfaces were captured with the scanning electron microscope (SEM) at –50 °C, 0 °C and 125 °C and the morphological structure revealed were documented.",
keywords = "Aluminium, Brittleness, Carbon steel, Ductility, Fracture, Transition",
author = "Ikumapayi, {O. M.} and Akinlabi, {E. T.} and Fatoba, {S. O.} and Kazeem, {R. A.} and Afolabi, {S. O.} and Adeoye, {A. O.M.} and Akinlabi, {S. A.}",
note = "Funding Information: Acknowledgements. The authors wish to acknowledge the financial support offered by Pan African University for Life and Earth Sciences Institute (PAULESI), Ibadan, Nigeria for the payment of article publication charges (APC). Publisher Copyright: {\textcopyright} 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.; 6th International Conference on Mechanical, Manufacturing and Plant Engineering, ICMMPE 2020 ; Conference date: 25-11-2020 Through 26-11-2020",
year = "2021",
month = jul,
day = "6",
doi = "10.1007/978-981-16-3641-7_19",
language = "English",
isbn = "9789811636400",
series = "Lecture Notes in Mechanical Engineering",
publisher = "Springer",
pages = "150--168",
editor = "Mokhtar Awang and Emamian, {Seyed Sattar}",
booktitle = "Advances in Material Science and Engineering",
address = "Germany",
edition = "1",
}