Evidence for preservation of organic carbon interacting with iron in material displaced from retrogressive thaw slumps: Case study in Peel Plateau, western Canadian Arctic

Maxime Thomas*, Arthur Monhonval, Catherine Hirst, Lisa Bröder, Scott Zolkos, Jorien E. Vonk, Suzanne E. Tank, Kirsi H. Keskitalo, Sarah Shakil, Steven V. Kokelj, Jurjen van der Sluijs, Sophie Opfergelt

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
7 Downloads (Pure)


In northern high latitudes, rapid warming is set to amplify carbon-climate feedbacks by enhancing permafrost thaw and biogeochemical transformation of large amounts of soil organic carbon. However, between 30 % and 80 % of permafrost soil organic carbon is considered to be stabilized by geochemical interactions with the soil mineral pool and thus less susceptible to be emitted as greenhouse gases. Quantification of the nature of and controls on mineral-organic carbon interactions is needed to better constrain permafrost-carbon-climate feedbacks, particularly in ice-rich environments resulting in rapid thaw and development of thermokarst landforms. On sloping terrain, mass wasting features called retrogressive thaw slumps are amongst the most dynamic forms of thermokarst. These multi-decadal disturbances grow due to ablation of an ice-rich headwall, and their enlargement due to warming of the Arctic is mobilizing vast stores of previously frozen materials. Here, we investigate headwall profiles of seven retrogressive thaw slumps and sediments displaced from these mass wasting features from the Peel Plateau, western Canadian Arctic. The disturbances varied in their headwall height (2 to 25 m) and affected land surface area (<1 to > 30 ha). We present total and water extractable mineral element concentrations, mineralogy, and mineral-organic carbon interactions in the headwall layers (active layer, permafrost materials above an early Holocene thaw unconformity, and Pleistocene-aged permafrost tills) and in displaced material (suspended sediments in runoff and material accumulated on the debris tongue). Our data show that the main mechanism of organic carbon stabilization through mineral-organic carbon interactions within the headwall is the complexation with metals (mainly iron), which stabilizes 30 ± 15 % of the total organic carbon pool with higher concentrations in near-surface layers compared to deep permafrost. In the displaced material, this proportion drops to 18 ± 5 %. In addition, we estimate that up to 12 ± 5 % of the total organic carbon is stabilized by associations to poorly crystalline iron oxides, with no significant difference between near-surface layers, deep permafrost and displaced material. Our findings suggest that the organic carbon interacting with the sediment mineral pool in slump headwalls is preserved in the material mobilized by slumping and displaced as debris. Overall, up to 32 ± 6 % of the total organic carbon displaced by retrogressive thaw slumps is stabilized by organo-mineral interactions in this region. This indicates that organo-mineral interactions play a significant role in the preservation of organic carbon in the material displaced from retrogressive thaw slumps over years to decades after their development resulting in decadal to centennial scale sequestration of this retrogressive thaw slump-mobilized organic carbon interacting with the soil mineral pool.

Original languageEnglish
Article number116443
Number of pages17
Early online date6 Apr 2023
Publication statusPublished - 1 May 2023
Externally publishedYes

Cite this