Evidence for the photospheric excitation of incompressible chromospheric waves

Richard Morton, Gary Verth, Viktor Fedun, Sergiy Shelyag

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)
25 Downloads (Pure)

Abstract

Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.
Original languageEnglish
Pages (from-to)17
JournalThe Astronomical Journal
Volume768
Issue number1
DOIs
Publication statusPublished - May 2013

Keywords

  • magnetohydrodynamics (MHD)
  • Sun: chromosphere
  • Sun: photosphere
  • waves

Fingerprint

Dive into the research topics of 'Evidence for the photospheric excitation of incompressible chromospheric waves'. Together they form a unique fingerprint.

Cite this