TY - JOUR
T1 - Excess molar enthalpies for mixtures of supercritical carbon dioxide and limonene
AU - Sanchez Vicente, Yolanda
AU - Perez, Eduardo
AU - Cabañas, Albertina
AU - Urieta, Jose S.
AU - Renuncio, Juan A. R.
AU - Pando, Concepcion
PY - 2006/8/25
Y1 - 2006/8/25
N2 - Excess molar enthalpies () for mixtures of supercritical CO2 and limonene were measured at 308.15, 313.15 and 323.15 K and 7.64 and 10.00 MPa using an isothermal high-pressure flow calorimeter. The effects of pressure and temperature on the excess molar enthalpy of [CO2(x) + limonene(1 − x)] are large. Mixtures at 308.15 K and 10.00 MPa show slightly endothermic mixing in the limonene-rich region and moderately exothermic mixing for x > 0.5. Mixtures at the other conditions of temperature and pressure studied show exothermic mixing, excess molar enthalpies exhibit a minimum in the CO2-rich region. The lowest values (≈−4500 J mol−1) are observed for mixtures at 313.15 K and 7.64 MPa. On the other hand, at 7.64 MPa and 308.15, 313.15 and 323.15 K varies linearly with CO2 mole fraction in the two-phase region where a gaseous and a liquid mixture of fixed composition, for a given condition of temperature and pressure, are in equilibrium. These data are examined together with phase equilibria and critical parameters previously reported for CO2 + limonene. Excess molar enthalpies are simultaneously correlated using the Peng–Robinson equation of state and the classical mixing rule with one binary interaction parameter.
AB - Excess molar enthalpies () for mixtures of supercritical CO2 and limonene were measured at 308.15, 313.15 and 323.15 K and 7.64 and 10.00 MPa using an isothermal high-pressure flow calorimeter. The effects of pressure and temperature on the excess molar enthalpy of [CO2(x) + limonene(1 − x)] are large. Mixtures at 308.15 K and 10.00 MPa show slightly endothermic mixing in the limonene-rich region and moderately exothermic mixing for x > 0.5. Mixtures at the other conditions of temperature and pressure studied show exothermic mixing, excess molar enthalpies exhibit a minimum in the CO2-rich region. The lowest values (≈−4500 J mol−1) are observed for mixtures at 313.15 K and 7.64 MPa. On the other hand, at 7.64 MPa and 308.15, 313.15 and 323.15 K varies linearly with CO2 mole fraction in the two-phase region where a gaseous and a liquid mixture of fixed composition, for a given condition of temperature and pressure, are in equilibrium. These data are examined together with phase equilibria and critical parameters previously reported for CO2 + limonene. Excess molar enthalpies are simultaneously correlated using the Peng–Robinson equation of state and the classical mixing rule with one binary interaction parameter.
KW - supercritical carbon dioxide
KW - limonene
KW - mixtures
KW - excess molar enthalpies
U2 - 10.1016/j.fluid.2006.05.027
DO - 10.1016/j.fluid.2006.05.027
M3 - Article
SN - 0378-3812
VL - 246
SP - 153
EP - 157
JO - Fluid Phase Equilibria
JF - Fluid Phase Equilibria
IS - 1-2
ER -