TY - JOUR
T1 - Exploring the impact of diagenesis on (isotope) geochemical and microstructural alteration features in biogenic aragonite
AU - Ritter, Ann Christine
AU - Mavromatis, Vasileios
AU - Dietzel, Martin
AU - Kwiecien, Ola
AU - Wiethoff, Felix
AU - Griesshaber, Erika
AU - Casella, Laura A.
AU - Schmahl, Wolfgang W.
AU - Koelen, Jennifer
AU - Neuser, Rolf D.
AU - Leis, Albrecht
AU - Buhl, Dieter
AU - Niedermayr, Andrea
AU - Breitenbach, Sebastian F.M.
AU - Bernasconi, Stefano M.
AU - Immenhauser, Adrian
PY - 2017/8/1
Y1 - 2017/8/1
N2 - For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre-Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O-depleted fluids for durations between two and twenty weeks. Alteration was documented using X-ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple-blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate-buffered system. Clumped isotope temperatures in high-temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow-up experiments.
AB - For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre-Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O-depleted fluids for durations between two and twenty weeks. Alteration was documented using X-ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple-blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate-buffered system. Clumped isotope temperatures in high-temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow-up experiments.
KW - Aragonite
KW - bivalves
KW - carbonate
KW - diagenesis
KW - geochemistry
KW - petrography
U2 - 10.1111/sed.12356
DO - 10.1111/sed.12356
M3 - Article
AN - SCOPUS:85016336567
SN - 0037-0746
VL - 64
SP - 1354
EP - 1380
JO - Sedimentology
JF - Sedimentology
IS - 5
ER -