Abstract
This study aims to develop an innovative carbon fibre reinforced polymer (CFRP) laminate with a U configuration to address strengthening interventions, where the increment of both flexural and shear capacity of reinforced concrete (RC) elements is required. This strengthening solution combines the near surface mounted (NSM) and embedded through section (ETS) techniques in the same application, since these techniques have already evidenced high performance on flexural and shear strengthening of RC beams using FRP systems, respectively. In fact, the proposed hybrid technique aims to mobilize the advantages provided by these two strengthening techniques by using an innovative CFRP laminate. The strengthening efficacy of this new hybrid NSM/ETS technique was numerically assessed and compared to the corresponding efficiency of NSM and ETS techniques applied separately for the flexural and shear strengthening of RC beams, respectively. The numerical models are described and the main relevant results are presented and discussed.
Original language | English |
---|---|
Publication status | Published - 1 Jan 2015 |
Externally published | Yes |
Event | Joint Conference of the 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures, FRPRCS 2015 and the 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures, APFIS 2015 - Nanjing, China Duration: 14 Dec 2015 → 16 Dec 2015 |
Conference
Conference | Joint Conference of the 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures, FRPRCS 2015 and the 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures, APFIS 2015 |
---|---|
Country/Territory | China |
City | Nanjing |
Period | 14/12/15 → 16/12/15 |
Keywords
- CFRP laminate
- ETS technique
- Finite element
- Flexural and shear analysis
- NSM technique