TY - JOUR
T1 - Extreme-ultraviolet bursts and nanoflares in the quiet-Sun transition region and corona
AU - Chitta, L. P.
AU - Peter, H.
AU - Young, P. R.
N1 - Funding Information: We thank the anonymous referee for providing constructive comments that helped us improve the manuscript. P. R. Y. acknowledges funding from the NASA Heliophysics Guest Investigator Program. SDO data are courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research Center and major contributions to downlink communications funded by ESA and the Norwegian Space Centre. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK) and NASA Goddard Space Flight Center (USA). This research has made use of NASA’s Astrophysics Data System.
Publisher Copyright:
© L. P. Chitta et al. 2021.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - The quiet solar corona consists of myriads of loop-like features, with magnetic fields originating from network and internetwork regions on the solar surface. The continuous interaction between these different magnetic patches leads to transient brightenings or bursts that might contribute to the heating of the solar atmosphere. The literature on a variety of such burst phenomena in the solar atmosphere is rich. However, it remains unclear whether such transients, which are mostly observed in the extreme ultraviolet (EUV), play a significant role in atmospheric heating. We revisit the open question of these bursts as a prelude to the new high-resolution EUV imagery expected from the recently launched Solar Orbiter. We use EUV image sequences recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) to investigate statistical properties of the bursts. We detect the bursts in the 171 Å filter images of AIA in an automated way through a pixel-wise analysis by imposing different intensity thresholds. By exploiting the high cadence (12 s) of the AIA observations, we find that the distribution of lifetimes of these events peaks at about 120 s. However, a significant number of events also have lifetimes shorter than 60 s. The sizes of the detected bursts are limited by the spatial resolution, which indicates that a larger number of events might be hidden in the AIA data. We estimate that about 100 new bursts appear per second on the whole Sun. The detected bursts have nanoflare-like energies of 1024 erg per event. Based on this, we estimate that at least 100 times more events of a similar nature would be required to account for the energy that is required to heat the corona. When AIA observations are considered alone, the EUV bursts discussed here therefore play no significant role in the coronal heating of the quiet Sun. If the coronal heating of the quiet Sun is mainly bursty, then the high-resolution EUV observations from Solar Orbiter may be able to reduce the deficit in the number of EUV bursts seen with SDO/AIA at least partly by detecting more such events.
AB - The quiet solar corona consists of myriads of loop-like features, with magnetic fields originating from network and internetwork regions on the solar surface. The continuous interaction between these different magnetic patches leads to transient brightenings or bursts that might contribute to the heating of the solar atmosphere. The literature on a variety of such burst phenomena in the solar atmosphere is rich. However, it remains unclear whether such transients, which are mostly observed in the extreme ultraviolet (EUV), play a significant role in atmospheric heating. We revisit the open question of these bursts as a prelude to the new high-resolution EUV imagery expected from the recently launched Solar Orbiter. We use EUV image sequences recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) to investigate statistical properties of the bursts. We detect the bursts in the 171 Å filter images of AIA in an automated way through a pixel-wise analysis by imposing different intensity thresholds. By exploiting the high cadence (12 s) of the AIA observations, we find that the distribution of lifetimes of these events peaks at about 120 s. However, a significant number of events also have lifetimes shorter than 60 s. The sizes of the detected bursts are limited by the spatial resolution, which indicates that a larger number of events might be hidden in the AIA data. We estimate that about 100 new bursts appear per second on the whole Sun. The detected bursts have nanoflare-like energies of 1024 erg per event. Based on this, we estimate that at least 100 times more events of a similar nature would be required to account for the energy that is required to heat the corona. When AIA observations are considered alone, the EUV bursts discussed here therefore play no significant role in the coronal heating of the quiet Sun. If the coronal heating of the quiet Sun is mainly bursty, then the high-resolution EUV observations from Solar Orbiter may be able to reduce the deficit in the number of EUV bursts seen with SDO/AIA at least partly by detecting more such events.
KW - Magnetic reconnection
KW - Sun: atmosphere
KW - Sun: corona
KW - Sun: magnetic fields
KW - Sun: transition region
KW - Sun: UV radiation
UR - http://www.scopus.com/inward/record.url?scp=85103491791&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202039969
DO - 10.1051/0004-6361/202039969
M3 - Article
AN - SCOPUS:85103491791
SN - 0004-6361
VL - 647
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A159
ER -