TY - JOUR
T1 - Feature-Based Human Model for Digital Apparel Design
AU - Wang, Shuxia
AU - Qin, Shengfeng
AU - Guan, Congying
PY - 2014/1/28
Y1 - 2014/1/28
N2 - Three-dimensional (3D) body scanning technology opens opportunities for virtual try-on and automatic made-to-measure apparel design. This paper proposes a new feature-based parametric method for modeling human body shape from scanned point clouds of a 3D body scanner $[{rm TC}]^{2}$. The human body model consists of two layers: the skeleton and the cross sections of each body part. First, a simple skeleton model from the body scanner $[{rm TC}]^{2}$ system has been improved by adding and adjusting the position of joints in order to better address some fit issues related to body shape changes such as spinal bending. Second, an automatic approach to extracting semantic features for cross sections has been developed based on the body hierarchy. For each cross section, it is described by a set of key points which can be fit with a closed cardinal spline. According to the point distribution in point clouds, an extraction method of key points on cross sections has been studied and developed. Third, this paper presents an interpolation approach to fitting the key points on a cross section to a cardinal spline, in which different tension parameters are tested and optimized to represent simple deformations of body shape. Finally, a connection approach of body parts is proposed by sharing a boundary curve. The proposed method has been tested with the developed virtual human model (VHM) system which is robust and easier to use. The model can also be imported in a CAD environment for other applications.
AB - Three-dimensional (3D) body scanning technology opens opportunities for virtual try-on and automatic made-to-measure apparel design. This paper proposes a new feature-based parametric method for modeling human body shape from scanned point clouds of a 3D body scanner $[{rm TC}]^{2}$. The human body model consists of two layers: the skeleton and the cross sections of each body part. First, a simple skeleton model from the body scanner $[{rm TC}]^{2}$ system has been improved by adding and adjusting the position of joints in order to better address some fit issues related to body shape changes such as spinal bending. Second, an automatic approach to extracting semantic features for cross sections has been developed based on the body hierarchy. For each cross section, it is described by a set of key points which can be fit with a closed cardinal spline. According to the point distribution in point clouds, an extraction method of key points on cross sections has been studied and developed. Third, this paper presents an interpolation approach to fitting the key points on a cross section to a cardinal spline, in which different tension parameters are tested and optimized to represent simple deformations of body shape. Finally, a connection approach of body parts is proposed by sharing a boundary curve. The proposed method has been tested with the developed virtual human model (VHM) system which is robust and easier to use. The model can also be imported in a CAD environment for other applications.
KW - Apparel design
KW - apparel-fit-to-body issues
KW - human body modeling
KW - parametric modeling
U2 - 10.1109/TASE.2014.2300876
DO - 10.1109/TASE.2014.2300876
M3 - Article
SN - 1545-5955
VL - 99
SP - 1
EP - 7
JO - IEEE Transactions on Automation Science and Engineering
JF - IEEE Transactions on Automation Science and Engineering
ER -