Feeling Alone Among 317 Million Others: Disclosures of Loneliness on Twitter

Research output: Contribution to journalArticlepeer-review


External departments

  • Loughborough University
  • University of Bath


Original languageEnglish
Pages (from-to)20-30
JournalComputers in Human Behavior
Early online date24 Mar 2019
Publication statusPublished - 1 Sep 2019
Publication type

Research output: Contribution to journalArticlepeer-review


Increasing numbers of individuals describe themselves as feeling lonely, regardless of age, gender or geographic location. This article investigates how social media users self-disclose feelings of loneliness, and how they seek and provide support to each other. Motivated by related studies in this area, a dataset of 22,477 Twitter posts sent over a one-week period was analyzed using both qualitative and quantitative methods. Through a thematic analysis, we demonstrate that self-disclosure of perceived loneliness takes a variety of forms, from simple statements of “I’m lonely”, through to detailed self-reflections of the underlying causes of loneliness. The analysis also reveals forms of online support provided to those who are feeling lonely. Further, we conducted a quantitative linguistic content analysis of the dataset which revealed patterns in the data, including that ‘lonely’ tweets were significantly more negative than those in a control sample, with levels of negativity fluctuating throughout the week and posts sent at night being more negative than those sent in the daytime.

Download Title (Resource: downloads_chaqrt)

No data available