Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides

Maria Luisa Mangoni, Vincenzo Luca, Alison McDermott

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Due to the growing emergence of resistance to commercially available antibiotics/antimycotics in virtually all clinical microbial pathogens, the discovery of alternative anti-infective agents, is greatly needed. Gene-encoded antimicrobial peptides (AMPs) hold promise as novel therapeutics. In particular, amphibian skin is one of the richest storehouses of AMPs, especially that of the genus Rana, with esculentins-1 being among the longest (46 amino acids) AMPs found in nature to date. Here, we report on the recently discovered in vitro and in vivo activities and mechanism of action of two derivatives of the N-terminal part of esculentin-1a and -1b peptides, primarily against two relevant opportunistic microorganisms causing a large number of life-threatening infections worldwide; i.e. the Gram-negative bacterium Pseudomonas aeruginosa and the yeast Candida albicans. Because of distinct advantages compared to several mammalian AMPs, the two selected frog skin AMP-derivatives represent attractive candidates for the development of new antimicrobial compounds with expanded properties, for both human and veterinary medicine.
Original languageEnglish
Pages (from-to)286-295
JournalPeptides
Volume71
Early online date8 May 2015
DOIs
Publication statusPublished - Sept 2015

Keywords

  • Antimicrobial peptide
  • Frog skin
  • Keratitis
  • Cystic fibrosis
  • Infectious diseases
  • Innate immunity

Fingerprint

Dive into the research topics of 'Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides'. Together they form a unique fingerprint.

Cite this