TY - JOUR
T1 - Fine-Tuning Heat Stress Algorithms to Optimise Global Predictions of Mass Coral Bleaching
AU - Lachs, Liam
AU - Bythell, John C.
AU - East, Holly K.
AU - Edwards, Alasdair J.
AU - Mumby, Peter J.
AU - Skirving, William J.
AU - Spady, Blake L.
AU - Guest, James R.
N1 - Funding information: This research was funded by the Natural Environment Research Council’s ONE Planet Doctoral Training Partnership (NE/S007512/1) to L.L., the European Research Council Horizon 2020 project CORALASSIST (project number 725848) to J.R.G. and A.J.E. Coral Reef Watch and ReefSense staff (B.L.S. and W.J.S.) were supported by NOAA grant NA19NES4320002 (Cooperative Institute for Satellite Earth System Studies) at the University of Maryland/ESSIC.
PY - 2021/7/7
Y1 - 2021/7/7
N2 - Increasingly intense marine heatwaves threaten the persistence of many marine ecosystems. Heat stress-mediated episodes of mass coral bleaching have led to catastrophic coral mortality globally. Remotely monitoring and forecasting such biotic responses to heat stress is key for effective marine ecosystem management. The Degree Heating Week (DHW) metric, designed to monitor coral bleaching risk, reflects the duration and intensity of heat stress events and is computed by accumulating SST anomalies (HotSpot) relative to a stress threshold over a 12-week moving window. Despite significant improvements in the underlying SST datasets, corresponding revisions of the HotSpot threshold and accumulation window are still lacking. Here, we fine-tune the operational DHW algorithm to optimise coral bleaching predictions using the 5 km satellite-based SSTs (CoralTemp v3.1) and a global coral bleaching dataset (37,871 observations, National Oceanic and Atmospheric Administration). After developing 234 test DHW algorithms with different combinations of the HotSpot threshold and accumulation window, we compared their bleaching prediction ability using spatiotemporal Bayesian hierarchical models and sensitivity–specificity analyses. Peak DHW performance was reached using HotSpot thresholds less than or equal to the maximum of monthly means SST climatology (MMM) and accumulation windows of 4–8 weeks. This new configuration correctly predicted up to an additional 310 bleaching observations globally compared to the operational DHW algorithm, an improved hit rate of 7.9%. Given the detrimental impacts of marine heatwaves across ecosystems, heat stress algorithms could also be fine-tuned for other biological systems, improving scientific accuracy, and enabling ecosystem governance.
AB - Increasingly intense marine heatwaves threaten the persistence of many marine ecosystems. Heat stress-mediated episodes of mass coral bleaching have led to catastrophic coral mortality globally. Remotely monitoring and forecasting such biotic responses to heat stress is key for effective marine ecosystem management. The Degree Heating Week (DHW) metric, designed to monitor coral bleaching risk, reflects the duration and intensity of heat stress events and is computed by accumulating SST anomalies (HotSpot) relative to a stress threshold over a 12-week moving window. Despite significant improvements in the underlying SST datasets, corresponding revisions of the HotSpot threshold and accumulation window are still lacking. Here, we fine-tune the operational DHW algorithm to optimise coral bleaching predictions using the 5 km satellite-based SSTs (CoralTemp v3.1) and a global coral bleaching dataset (37,871 observations, National Oceanic and Atmospheric Administration). After developing 234 test DHW algorithms with different combinations of the HotSpot threshold and accumulation window, we compared their bleaching prediction ability using spatiotemporal Bayesian hierarchical models and sensitivity–specificity analyses. Peak DHW performance was reached using HotSpot thresholds less than or equal to the maximum of monthly means SST climatology (MMM) and accumulation windows of 4–8 weeks. This new configuration correctly predicted up to an additional 310 bleaching observations globally compared to the operational DHW algorithm, an improved hit rate of 7.9%. Given the detrimental impacts of marine heatwaves across ecosystems, heat stress algorithms could also be fine-tuned for other biological systems, improving scientific accuracy, and enabling ecosystem governance.
KW - marine heatwaves
KW - sea surface temperature
KW - mass coral bleaching
KW - algorithm optimisation
KW - spatiotemporal Bayesian modelling
KW - R-INLA
KW - Marine heatwaves
KW - Spatiotemporal Bayesian modelling
KW - Algorithm optimisation
KW - Mass coral bleaching
KW - Sea surface temperature
UR - http://www.scopus.com/inward/record.url?scp=85110756989&partnerID=8YFLogxK
U2 - 10.3390/rs13142677
DO - 10.3390/rs13142677
M3 - Article
SN - 2072-4292
VL - 13
JO - Remote Sensing
JF - Remote Sensing
IS - 14
M1 - 2677
ER -