Abstract
Origami has recently emerged as a promising building block of mechanical metamaterials because it offers a purely geometric design approach independent of scale and constituent material. The folding mechanics of origami-inspired metamaterials, i.e., whether the deformation involves only rotation of crease lines (rigid origami) or both crease rotation and facet distortion (nonrigid origami), is critical for fine-tuning their mechanical properties yet very difficult to determine for origami patterns with complex behaviors. Here, we characterize the folding of tubular waterbomb using a combined kinematic and structural analysis. We for the first time uncover that a waterbomb tube can undergo a mixed mode involving both rigid origami motion and nonrigid structural deformation, and the transition between them can lead to a substantial change in the stiffness. Furthermore, we derive theoretically the range of geometric parameters for the transition to occur, which paves the road to program the mechanical properties of the waterbomb pattern. We expect that such analysis and design approach will be applicable to more general origami patterns to create innovative programmable metamaterials, serving for a wide range of applications including aerospace systems, soft robotics, morphing structures, and medical devices.
Original language | English |
---|---|
Article number | 1735081 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Research |
Volume | 2020 |
Early online date | 10 Apr 2020 |
DOIs | |
Publication status | Published - Apr 2020 |
Externally published | Yes |