TY - JOUR
T1 - Forecasting U.K. Inbound Expenditure by Different Purposes of Visit
AU - Cang, Shuang
AU - Hemmington, Nigel
PY - 2010/8/1
Y1 - 2010/8/1
N2 - Accurately forecasting U.K. inbound expenditure by purpose of visit plays an important role in tourism planning and policy making. Forecasting U.K. inbound expenditure at the disaggregated level is studied in this article. Disaggregating is done on the basis of purpose of visit: holiday, business, study, visit friends or relatives (VFR), and miscellaneous. The most robust two time series forecasting models, seasonal autoregressive integrated moving average (ARIMA) and Winters's multiplicative exponential smoothing (WMES), are applied in this article. The Naïve 2 forecasting model is used as a benchmark to compare with the ARIMA and WMES models. The outcomes of the forecasting results show that the ARIMA model outperforms the WMES model, but it is not statistically superior to the WMES model. The ARIMA and WMES models are both statistically superior to the Naïve 2 model for this U.K. inbound expenditure data set. The ARIMA model forecasts a higher increasing trend for expenditure than the WMES model for the business purpose, whereas the WMES model forecasts a higher increasing trend for expenditure than the ARIMA model for miscellaneous purpose. It is recommended that combining the values from the ARIME and the WMES models is used as forecasting values on these business and miscellaneous purposes.
AB - Accurately forecasting U.K. inbound expenditure by purpose of visit plays an important role in tourism planning and policy making. Forecasting U.K. inbound expenditure at the disaggregated level is studied in this article. Disaggregating is done on the basis of purpose of visit: holiday, business, study, visit friends or relatives (VFR), and miscellaneous. The most robust two time series forecasting models, seasonal autoregressive integrated moving average (ARIMA) and Winters's multiplicative exponential smoothing (WMES), are applied in this article. The Naïve 2 forecasting model is used as a benchmark to compare with the ARIMA and WMES models. The outcomes of the forecasting results show that the ARIMA model outperforms the WMES model, but it is not statistically superior to the WMES model. The ARIMA and WMES models are both statistically superior to the Naïve 2 model for this U.K. inbound expenditure data set. The ARIMA model forecasts a higher increasing trend for expenditure than the WMES model for the business purpose, whereas the WMES model forecasts a higher increasing trend for expenditure than the ARIMA model for miscellaneous purpose. It is recommended that combining the values from the ARIME and the WMES models is used as forecasting values on these business and miscellaneous purposes.
KW - autoregressive integrated moving average (ARIMA)
KW - forecasting
KW - tourism demand
KW - Winters's multiplicative exponential smoothing (WMES)
U2 - 10.1177/1096348009350616
DO - 10.1177/1096348009350616
M3 - Article
AN - SCOPUS:77955913468
SN - 1096-3480
VL - 34
SP - 294
EP - 309
JO - Journal of Hospitality and Tourism Research
JF - Journal of Hospitality and Tourism Research
IS - 3
ER -