TY - JOUR
T1 - Fractography analysis of 1.0 wt% nanoclay/multi-layer graphene reinforced epoxy nanocomposites
AU - Atif, Rasheed
AU - Inam, Fawad
PY - 2016/11/29
Y1 - 2016/11/29
N2 - The topographical features of fractured tensile, flexural, K1C, and impact specimens of 1.0 wt% multi-layered graphene/nanoclay-epoxy nanocomposites have been investigated. The topographical features studied include maximum roughness height (Rmax or Rz), root mean square value (Rq), roughness average (Ra), and waviness (Wa). Due to deflection and bifurcation of the cracks by nanofillers, specific fracture patterns are observed. Although these fracture patterns seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the influence of nanofiller on the mechanical properties. By a meticulous examination of topographical features of fractured patterns, various important aspects related to fillers can be approximated such as dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the incorporation of filler on the mechanical properties of nanocomposites. In addition, treating the nanocomposites with surfaces of specific topography can help improve the mechanical properties of nanocomposites.
AB - The topographical features of fractured tensile, flexural, K1C, and impact specimens of 1.0 wt% multi-layered graphene/nanoclay-epoxy nanocomposites have been investigated. The topographical features studied include maximum roughness height (Rmax or Rz), root mean square value (Rq), roughness average (Ra), and waviness (Wa). Due to deflection and bifurcation of the cracks by nanofillers, specific fracture patterns are observed. Although these fracture patterns seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the influence of nanofiller on the mechanical properties. By a meticulous examination of topographical features of fractured patterns, various important aspects related to fillers can be approximated such as dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the incorporation of filler on the mechanical properties of nanocomposites. In addition, treating the nanocomposites with surfaces of specific topography can help improve the mechanical properties of nanocomposites.
U2 - 10.1177/0021998316679017
DO - 10.1177/0021998316679017
M3 - Article
SN - 0021-9983
JO - Journal of Composite Materials
JF - Journal of Composite Materials
ER -