Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulates members of the actinorhizal Rhamnales

Imen Nouioui, Faten Ghodhbane-Gtari, Manfred Rhode, Vartul Sangal, Hans-Peter Klenk, Maher Gtari

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
6 Downloads (Pure)

Abstract

A red pigmented actinobacterium designated G2T, forming extremely branched vegetative hyphae, vesicles and mutilocular sporangia, was isolated from Casuarina equisetifolia nodules. The strain failed to nodulate its original host plant but effectively nodulated members of actinorhizal Rhamnales. The taxonomic position of G2T was determined using a polyphasic approach. The peptidoglycan of the strain contained meso-diaminopimelic acid as diagnostic diamino acid, galactose, glucose, mannose, rhamnose, ribose and xylose. The polar lipid pattern consisted of phosphatidylinositol (PI), diphosphatidylglycerol (DPG), glycophospholipids (GPL1-2), phosphatidylglycerol (PG), aminophospholipid (APL) and unknown lipids (L). The predominant menaquinones were MK-9 (H4) and MK-9 (H6) while the major fatty acids were iso-C16 : 0, C17 : 1ω8c and C15 : 0. The size of the genome of G2T was 9.5 Mb and digital DNA G+C content was 70.9 %. The 16S rRNA gene showed 97.4-99.5 % sequence identity with the type strains of species of the genus Frankia. Digital DNA -DNA hybridisation (dDDH) values between G2T and its nearest phylogenetic neighbours Frankia elaeagniand Frankia discariaewere below the threshold of 70 %. On the basis of these results, strain G2T (=DSM 45899T=CECT 9038T) is proposed to represent the type strain of a novel species Frankia irregularis sp. nov.

Original languageEnglish
Pages (from-to)2883-2914
JournalInternational Journal of Systematic and Evolutionary Microbiology
Volume68
Early online date16 Jul 2018
DOIs
Publication statusPublished - 1 Sep 2018

Fingerprint Dive into the research topics of 'Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulates members of the actinorhizal Rhamnales'. Together they form a unique fingerprint.

Cite this