Abstract
Light gauge steel-framed (LSF) walls, commonly made with lipped channel studs and gypsum plasterboard sheathing, are increasingly being used in low to mid-rise buildings. Improvements have been made with respect to fire, wind/seismic and energy performance of LSF walls with the use of improved stud sections, wall configurations, different sheathing members, and insulation materials. Although the provision of sheet steel as sheathing has been found to improve the in-plane shear capacity of LSF walls, its effects on the fire performance of load bearing walls remain unknown. Three full-scale ISO 834 standard fire tests were conducted in this study to investigate the fire performance of axially loaded gypsum plasterboard and steel sheathed LSF walls made with web-stiffened studs. The results revealed that compared to the commonly used lipped channel stud, the web-stiffened stud is capable of withstanding a 57% greater axial compression load, yet yield the same fire resistance level (FRL), when sheathed only with two layers of gypsum plasterboard. Under the selected load ratio, the addition of steel sheathing caused only marginal improvements in the stud temperature development, resulting in minor improvements to the FRL of load bearing walls. However, the axial load bearing capacity improvement caused by the inclusion of steel sheathing allowed the web-stiffened stud to withstand a 10% greater axial compression load compared to the plasterboard only wall.
Original language | English |
---|---|
Pages (from-to) | 81-93 |
Number of pages | 13 |
Journal | Thin-Walled Structures |
Volume | 137 |
Early online date | 14 Jan 2019 |
DOIs | |
Publication status | Published - 1 Apr 2019 |
Keywords
- Cold-formed steel structures
- Standard fire tests
- Load bearing walls
- Web-stiffened stud
- Steel sheathing
- Fire resistance level