TY - JOUR
T1 - Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach
AU - Trinh, Luan
AU - Vo, Thuc
AU - Osofero, Israel
AU - Lee, Jaehong
PY - 2016/11/15
Y1 - 2016/11/15
N2 - The state space approach is used to provide analytical solution for fundamental frequency analysis of functionally graded sandwich beams. The classical beam theory, first-order and higher-order shear deformation theories are employed to consider beams of various classical and non-classical boundary conditions. Governing equations of motions are derived from Hamilton's principle. The research investigates the effect of boundary conditions on the fundamental frequency with nine combinations of classical boundary conditions created from clamped, hinged, pinned and free conditions in accordance with three combinations of non-classical boundary conditions created from the assumption of an elastic support. In addition, the influence of material parameter and arrangement of layers as well as the slenderness ratio in vibration of functionally graded sandwich beams is examined.
AB - The state space approach is used to provide analytical solution for fundamental frequency analysis of functionally graded sandwich beams. The classical beam theory, first-order and higher-order shear deformation theories are employed to consider beams of various classical and non-classical boundary conditions. Governing equations of motions are derived from Hamilton's principle. The research investigates the effect of boundary conditions on the fundamental frequency with nine combinations of classical boundary conditions created from clamped, hinged, pinned and free conditions in accordance with three combinations of non-classical boundary conditions created from the assumption of an elastic support. In addition, the influence of material parameter and arrangement of layers as well as the slenderness ratio in vibration of functionally graded sandwich beams is examined.
KW - Vibration
KW - functionally graded sandwich beams
KW - state space approach
KW - non-classical boundary conditions
U2 - 10.1016/j.compstruct.2015.11.010
DO - 10.1016/j.compstruct.2015.11.010
M3 - Article
SN - 0263-8223
SN - 1879-1085
VL - 156
SP - 263
EP - 275
JO - Composite Structures
JF - Composite Structures
ER -