Growth Characteristics and Thermodynamics of Syntrophic Acetate Oxidizers

Research output: Contribution to journalArticlepeer-review

DOI

Authors

External departments

  • Swedish University of Agricultural Sciences
  • Newcastle University

Details

Original languageEnglish
Pages (from-to)5512-5520
Number of pages9
JournalEnvironmental Science and Technology
Volume53
Issue number9
DOIs
Publication statusPublished - 7 May 2019
Externally publishedYes
Publication type

Research output: Contribution to journalArticlepeer-review

Abstract

Syntrophic acetate oxidation (SAO) plays a pivotal role in biogas production processes when aceticlastic methanogens are inhibited. Despite the importance of SAO, the metabolic interactions and syntrophic growth of the organisms involved are still poorly understood. Therefore, we studied growth parameters and interactions within constructed defined cocultures comprising the methanogen Methanoculleus bourgensis and one, or several, of the syntrophic acetate oxidizers Syntrophaceticus schinkii, [Clostridium] ultunense, and Tepidanaerobacter acetatoxydans and a novel, uncharacterized bacterium. Cultivation experiments in a design-of-experiment approach revealed positive effects on methane production rate of increased ammonium levels (up to 0.2 M), temperature (up to 45 °C), and acetate concentrations (0.15-0.30 M). Molecular analyses and thermodynamic calculations demonstrated close interlinkages between the microorganisms, with available energies of -10 kJ/mol for acetate oxidation and -20 kJ/mol for hydrogenotrophic methanogenesis. The estimated generation time varied between 3 and 20 days for all syntrophic microorganisms involved, and the acetate minimum threshold level was 0.40-0.45 mM. The rate of methanogenesis depended on the SAO bacteria present in the culture. These data are beneficial for interpretation of SAO prevalence and competiveness against aceticlastic methanogens in anaerobic environments.