High Interfacial Hole‐Transfer Efficiency at GaFeO3 Thin Film Photoanodes

Xin Sun, Devendra Tiwari, David J. Fermin

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)
63 Downloads (Pure)


The photoelectrochemical properties of polycrystalline GaFeO3 (GFO) thin films are investigated for the first time. Thin films prepared by sol–gel methods exhibit phase‐pure orthorhombic GFO with the Pc21n space group, as confirmed by X‐ray diffraction and Raman spectroscopy. Optical responses are characterized by a 2.72 eV interband transition and sub‐bandgap d–d transitions associated with octahedral and tetrahedral coordination of Fe3+ sites. DFT‐HSE06 electronic structure calculations show GFO is highly ionic with very low dispersion in the valence band maximum (VBM) and conduction band minimum (CBM). Electrochemical impedance spectroscopy reveals n‐type conductivity with a flat band potential (Ufb) of 0.52 V versus reversible hydrogen electrode, indicating that GFO has the most positive CBM reported of any ferrite. The photoelectrochemical oxidation of SO32− shows an ideal semiconductor–electrolyte interfacial behavior with no evidence of surface recombination down to the Ufb. Surprisingly, the onset potential for the oxygen evolution reaction also coincides with the Ufb, showing interfacial hole‐transfer efficiency above 50%. The photoelectrochemical properties are limited by bulk recombination due to the short‐diffusion length of minority carriers as well as slow transport of majority carriers. Strategies towards developing high‐efficiency GFO photoanodes are briefly discussed.
Original languageEnglish
Article number2002784
Number of pages9
JournalAdvanced Energy Materials
Issue number45
Early online date22 Oct 2020
Publication statusPublished - 1 Dec 2020


Dive into the research topics of 'High Interfacial Hole‐Transfer Efficiency at GaFeO3 Thin Film Photoanodes'. Together they form a unique fingerprint.

Cite this