Abstract
In an effort to overcome the lack of a suitable metal as an ohmic back contact for CdTe solar cells, a study was carried out on the potential for using a highly arsenic (As) doped CdTe layer with metallization. The deposition of full CdTe/CdS devices, including the highly doped CdTe:As and the CdCl2 treatment, were carried out by metal organic chemical vapour deposition (MOCVD), in an all-in-one process with no etching being necessary. They were characterized and compared to control devices prepared using conventional bromine-methanol back contact etching. SIMS and C-V profiling results indicated that arsenic concentrations of up to 1.5 × 1019 at·cm-3 were incorporated in the CdTe. Current-voltage (J-V) characteristics showed strong improvements, particularly in the open-circuit voltage (Voc) and series resistance (Rs): With a 250 nm thick doped layer, the series resistance was reduced from 9.8 Ω·cm2 to 1.6 Ω·cm2 for a contact area of 0.25 cm2; the J-V curves displayed no rollover, while the Voc increased by up to 70 mV (~ 12 % rise). Preliminary XRD data show that there may be an As2Te3 layer at the CdTe surface which could be contributing to the low barrier height of this contact.
Original language | English |
---|---|
Journal | MRS Proceedings |
Volume | 1012 |
DOIs | |
Publication status | Published - 2007 |
Keywords
- photovoltaic
- II-VI
- dopant