TY - JOUR
T1 - H+/solute-induced intracellular acidification leads to selective activation of apical Na+/H+ exchange in human intestinal epithelial cells
AU - Thwaites, David T.
AU - Ford, Dianne
AU - Glanville, Michael
AU - Simmons, Nicholas L.
N1 - This study was supported by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust. Technical support was provided by Charlotte Ward and Maxine Geggie.
PY - 1999/9/1
Y1 - 1999/9/1
N2 - The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H+-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na+/H+ exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na+/H+ exchange was determined by a combination of pH(i), 22Na+ influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H+/solute-induced acidification (using glycylsarcosine or β-alanine) led to Na+-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable 22Na+ influx at the apical membrane only. Selective activation of apical (but not basolateral) Na+/H+ exchange by H+/solute cotransport demonstrates that coordinated activity of H+/solute symport with apical Na+/H+ exchange optimizes the efficient absorption of nutrients and Na+, while maintaining phi and the ion gradients involved in driving transport.
AB - The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H+-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na+/H+ exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na+/H+ exchange was determined by a combination of pH(i), 22Na+ influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H+/solute-induced acidification (using glycylsarcosine or β-alanine) led to Na+-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable 22Na+ influx at the apical membrane only. Selective activation of apical (but not basolateral) Na+/H+ exchange by H+/solute cotransport demonstrates that coordinated activity of H+/solute symport with apical Na+/H+ exchange optimizes the efficient absorption of nutrients and Na+, while maintaining phi and the ion gradients involved in driving transport.
UR - http://www.scopus.com/inward/record.url?scp=0032723028&partnerID=8YFLogxK
U2 - 10.1172/JCI7192
DO - 10.1172/JCI7192
M3 - Article
C2 - 10487777
AN - SCOPUS:0032723028
SN - 0021-9738
VL - 104
SP - 629
EP - 635
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 5
ER -