Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound

Yufan Tang, Shuwei Ren, Han Meng, Fengxian Xin, Lixi Huang, Tianning Chen, Chuanzeng Zhang, Tian Jain Lu

Research output: Contribution to journalArticlepeer-review

204 Citations (Scopus)
39 Downloads (Pure)

Abstract

A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.

Original languageEnglish
Pages (from-to)43340
Number of pages11
JournalScientific Reports
Volume7
Early online date27 Feb 2017
DOIs
Publication statusPublished - Mar 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound'. Together they form a unique fingerprint.

Cite this