TY - JOUR
T1 - Hyperbranched Poly(ester-enamine) from Spontaneous Amino-yne Click Reaction for Stabilization of Gold Nanoparticle Catalysts
AU - Yang, Dong
AU - Liu, Pei
AU - Lin, Wanran
AU - Sui, Shanglin
AU - Huang, Long-Biao
AU - Xu, Ben Bin
AU - Kong, Jie
PY - 2020/8/17
Y1 - 2020/8/17
N2 - Hyperbranched polymers have garnered much attention due to attractive properties and wide applications, such as drug‐controlled release, stimuli‐responsive nano‐objects, photosensitive materials and catalysts. Herein, two types of novel hyperbranched poly(ester‐enamine) (hb‐PEEa) were designed and synthesized via the spontaneous amino‐yne click reaction of A2 monomer (1, 3‐bis(4‐piperidyl)‐propane (A2a) or piperazine (A2b)) and B3 monomer (trimethylolpropanetripropiolate). According to Flory's hypothesis, gelation is an intrinsic problem in an ideal A2+B3 polymerization system. By controlling the polymerization conditions, such as monomer concentration, molar ratio and rate of addition, a non‐ideal A2+B3 polymerization system can be established to avoid gelation and to synthesize soluble hb‐PEEa. Due to abundant unreacted alkynyl groups in periphery, the hb‐PEEa can be further functionalized by different amino compounds or their derivates. The as‐prepared amphiphilic PEG‐hb‐PEEa copolymer can readily self‐assemble into micelles in water, which can be used as surfactant to stabilize Au nanoparticles (AuNPs) during reduction of NaBH4 in aqueous solution. As a demonstration, the as‐prepared PEG‐hb‐PEEa‐supported AuNPs demonstrate good dispersion in water, solvent stability and remarkable catalytic activity for reduction of nitrobenzene compounds.
AB - Hyperbranched polymers have garnered much attention due to attractive properties and wide applications, such as drug‐controlled release, stimuli‐responsive nano‐objects, photosensitive materials and catalysts. Herein, two types of novel hyperbranched poly(ester‐enamine) (hb‐PEEa) were designed and synthesized via the spontaneous amino‐yne click reaction of A2 monomer (1, 3‐bis(4‐piperidyl)‐propane (A2a) or piperazine (A2b)) and B3 monomer (trimethylolpropanetripropiolate). According to Flory's hypothesis, gelation is an intrinsic problem in an ideal A2+B3 polymerization system. By controlling the polymerization conditions, such as monomer concentration, molar ratio and rate of addition, a non‐ideal A2+B3 polymerization system can be established to avoid gelation and to synthesize soluble hb‐PEEa. Due to abundant unreacted alkynyl groups in periphery, the hb‐PEEa can be further functionalized by different amino compounds or their derivates. The as‐prepared amphiphilic PEG‐hb‐PEEa copolymer can readily self‐assemble into micelles in water, which can be used as surfactant to stabilize Au nanoparticles (AuNPs) during reduction of NaBH4 in aqueous solution. As a demonstration, the as‐prepared PEG‐hb‐PEEa‐supported AuNPs demonstrate good dispersion in water, solvent stability and remarkable catalytic activity for reduction of nitrobenzene compounds.
KW - amino-yne click reaction
KW - hyperbranched polymers
KW - nanocatalyst
KW - reduction reaction
UR - http://www.scopus.com/inward/record.url?scp=85087571775&partnerID=8YFLogxK
U2 - 10.1002/asia.202000621
DO - 10.1002/asia.202000621
M3 - Article
SN - 1861-4728
VL - 15
SP - 2499
EP - 2504
JO - Chemistry - An Asian Journal
JF - Chemistry - An Asian Journal
IS - 16
ER -