Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase mtFabH

Qosay Al-Balas, Nahoum Anthony, Bilal Al-Jaidi, Amani Alnimr, Grainne Abbott, Alistair Brown, Rebecca Taylor, Gurdyal Besra, Timothy McHugh, Stephen Gillespie, Blair Johnston, Simon Mackay, Geoffrey Coxon

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

Background Tuberculosis (TB) is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. Methodology/Principal Findings Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM) to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H37Rv and, dissociatively, against the β-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H37Rv with an MIC of 0.06 µg/ml (240 nM), but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido)-5-(3-chlorophenyl)t​hiazole-4-carboxylateinhibited mtFabH with an IC50 of 0.95±0.05 µg/ml (2.43±0.13 µM) but was not active against the whole cell organism. Conclusions/Significance These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.
Original languageEnglish
Pages (from-to)e5617
JournalPLoS One
Volume4
Issue number5
DOIs
Publication statusPublished - May 2009

Keywords

  • mycobacterium tuberculosis

Fingerprint

Dive into the research topics of 'Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase mtFabH'. Together they form a unique fingerprint.

Cite this