Abstract
Superhydrophobic surfaces combine high aspect ratio micro- or nano-topography and hydrophobic surface chemistry to create super water-repellent surfaces. Most studies consider their effect on droplets, which ball-up and roll-off. However, their properties are not restricted to modification of the behaviour of droplets, but potentially influence any process occurring at the solid-liquid interface. Here, we highlight three recent developments focused on the theme of immersed superhydrophobic surfaces. The first illustrates the ability of a superhydrophobic surface to act as a gas exchange membrane, the second demonstrates a reduction in drag during flow through small tubes and the third considers a macroscopic experiment demonstrating an increase in the terminal velocity of settling spheres.
Original language | English |
---|---|
Pages (from-to) | 714 |
Journal | Soft Matter |
Volume | 6 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2010 |