TY - JOUR
T1 - Immunity Profiles of Wild-Type and Recombinant Shiga-Like Toxin-Encoding Bacteriophages and Characterization of Novel Double Lysogens
AU - Allison, Heather
AU - Sergeant, Martin
AU - James, Chloe
AU - Saunders, Jon
AU - Smith, Darren
AU - Sharp, Richard
AU - Marks, Trevor
AU - McCarthy, Alan
PY - 2003
Y1 - 2003
N2 - The pathogenicity of Shiga-like toxin (stx)-producing Escherichia coli (STEC), notably serotype O157, the causative agent of hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura, is based partly on the presence of genes (stx1 and/or stx2) that are known to be carried on temperate lambdoid bacteriophages. Stx phages were isolated from different STEC strains and found to have genome sizes in the range of 48 to 62 kb and to carry either stx1 or stx2 genes. Restriction fragment length polymorphism patterns and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles were relatively uninformative, but the phages could be differentiated according to their immunity profiles. Furthermore, these were sufficiently sensitive to enable the identification and differentiation of two different phages, both carrying the genes for Stx2 and originating from the same STEC host strain. The immunity profiles of the different Stx phages did not conform to the model established for bacteriophage lambda, in that the pattern of individual Stx phage infection of various lysogens was neither expected nor predicted. Unexpected differences were also observed among Stx phages in their relative lytic productivity within a single host. Two antibiotic resistance markers were used to tag a recombinant phage in which the stx genes were inactivated, enabling the first reported observation of the simultaneous infection of a single host with two genetically identical Stx phages. The data demonstrate that, although Stx phages are members of the lambdoid family, their replication and infection control strategies are not necessarily identical to the archetypical bacteriophage λ, and this could be responsible for the widespread occurrence of stx genes across a diverse range of E. coli serotypes.
AB - The pathogenicity of Shiga-like toxin (stx)-producing Escherichia coli (STEC), notably serotype O157, the causative agent of hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura, is based partly on the presence of genes (stx1 and/or stx2) that are known to be carried on temperate lambdoid bacteriophages. Stx phages were isolated from different STEC strains and found to have genome sizes in the range of 48 to 62 kb and to carry either stx1 or stx2 genes. Restriction fragment length polymorphism patterns and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles were relatively uninformative, but the phages could be differentiated according to their immunity profiles. Furthermore, these were sufficiently sensitive to enable the identification and differentiation of two different phages, both carrying the genes for Stx2 and originating from the same STEC host strain. The immunity profiles of the different Stx phages did not conform to the model established for bacteriophage lambda, in that the pattern of individual Stx phage infection of various lysogens was neither expected nor predicted. Unexpected differences were also observed among Stx phages in their relative lytic productivity within a single host. Two antibiotic resistance markers were used to tag a recombinant phage in which the stx genes were inactivated, enabling the first reported observation of the simultaneous infection of a single host with two genetically identical Stx phages. The data demonstrate that, although Stx phages are members of the lambdoid family, their replication and infection control strategies are not necessarily identical to the archetypical bacteriophage λ, and this could be responsible for the widespread occurrence of stx genes across a diverse range of E. coli serotypes.
U2 - 10.1128/IAI.71.6.3409-3418.2003
DO - 10.1128/IAI.71.6.3409-3418.2003
M3 - Article
SN - 0019-9567
VL - 71
SP - 3409
EP - 3418
JO - Infection and Immunity
JF - Infection and Immunity
IS - 6
ER -