Abstract
Unsolicited or spam emails are on the rise, where one's email storage inbox is bombarded with emails that make no sense at all. This creates excess usage of traffic bandwidth and results in unnecessary wastage of network resources. We wanted to test the Bayesian spam detection scheme with context matching that we had developed by implementing the keyword stripping using the Porter Stemmer algorithm. This could make the keyword search more efficient, as the root or stem word is only considered. Experimental results on two public spam corpuses are also discussed at the end.
Original language | English |
---|---|
Title of host publication | TENCON 2009 - 2009 IEEE Region 10 Conference |
Publisher | IEEE |
ISBN (Electronic) | 9781424445479 |
ISBN (Print) | 9781424445479 |
DOIs | |
Publication status | Published - 22 Jan 2010 |
Event | 2009 IEEE Region 10 Conference, TENCON 2009 - Singapore, Singapore Duration: 23 Nov 2009 → 26 Nov 2009 |
Conference
Conference | 2009 IEEE Region 10 Conference, TENCON 2009 |
---|---|
Country/Territory | Singapore |
City | Singapore |
Period | 23/11/09 → 26/11/09 |
Keywords
- Bayesian approach
- Keyword stemming
- Spam detection
- Spam email