Implications of spicule activity on coronal loop heating and catastrophic cooling

Vilangot Nhalil Nived*, Eamon Scullion, John Gerard Doyle, R. Susino, Patrick Antolin, D. Spadaro, C. Sasso, Seray Sahin, Mihalis Mathioudakis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We report on the properties of coronal loop foot-point heating with observations at the highest resolution, from the CRisp Imaging Spectro-Polarimeter (CRISP) located at the Swedish 1-m Solar Telescope (SST) and co-aligned NASA Solar Dynamics Observatory (SDO) observations, of Type II spicules in the chromosphere and their signatures in the EUV corona. Here, we address one important issue, as to why there is not always a one-to-one correspondence, between Type II spicules and hot coronal plasma signatures, i.e. beyond TR temperatures. We do not detect any difference in their spectral properties in a quiet Sun region compared to a region dominated by coronal loops. On the other hand, the number density close to the foot-points in the active region is found to be an order of magnitude higher than in the quiet Sun case. A differential emission measure analysis reveals a peak at ∼5 × 105 K on the order of 1022 cm−5 K−1. Using this result as a constraint, we conduct numerical simulations and show that with an energy input of 1.25 × 1024 erg (corresponding to ∼10 RBEs contributing to the burst) we manage to reproduce the observation very closely. However, simulation runs with lower thermal energy input do not reproduce the synthetic AIA 171 Å signatures, indicating that there is a critical number of spicules required in order to account for the AIA 171 Å signatures in the simulation. Furthermore, the higher energy (1.25 × 1024 ergs) simulations reproduce catastrophic cooling with a cycle duration of ∼5 hours, matching a periodicity we observe in the EUV observations.
Original languageEnglish
Article numberstab3277
Pages (from-to)5523-5537
Number of pages15
JournalMonthly Notices of the Royal Astronomical Society
Volume509
Issue number4
Early online date13 Nov 2021
DOIs
Publication statusE-pub ahead of print - 13 Nov 2021

Fingerprint

Dive into the research topics of 'Implications of spicule activity on coronal loop heating and catastrophic cooling'. Together they form a unique fingerprint.

Cite this