Abstract
It is paramount to improve operational conversion efficiency in air-conditioning refrigeration. It is noticed that control efficiency for model-based methods highly relies on the accuracy of the mechanism model, and data-driven methods would face challenges using the limited collected data to identify the information beyond. In this study, a hybrid novel approach is presented, which is to integrate a data-driven method with a coarse model. Specifically, reinforcement learning is used to exploit/explore the conversion efficiency of the refrigeration, and a coarse model is utilized to evaluate the reward, by which the requirement of the model accuracy is reduced and the model information is better used. The proposed approach is implemented based on a hierarchical control strategy which is divided into a process level and a loop level. The simulation of a test bed shows the proposed approach can achieve better conversion efficiency of refrigeration than the conventional methods.
Original language | English |
---|---|
Article number | 967 |
Number of pages | 19 |
Journal | Processes |
Volume | 7 |
Issue number | 12 |
DOIs | |
Publication status | Published - 17 Dec 2019 |
Keywords
- Coarse model
- Data-driven methods
- Refrigeration
- Reinforcement learning