TY - JOUR
T1 - Improving the deposition rate of multicomponent coating by controlling substrate table rotation in a magnetron sputtering process
AU - Haider, Julfikar
AU - Hashmi, Mohammed
PY - 2010
Y1 - 2010
N2 - Physical Vapour Deposition (PVD) technology, particularly magnetron sputtering process, enjoys the competitive advantages of depositing different new generation coatings (e.g., multicomponent, multilayer, graded, composite etc.) on three-dimensional objects (substrate) with excellent mechanical and tribological properties. In an industrial-scale sputtering chamber with a limited number of active magnetron sources (target) on the chamber wall, the density of coating species from different sources would not be uniform everywhere around the chamber. As a result, at a constant speed of rotating substrate table in a single revolution, the instantaneous deposition rate will be highest in front of the active targets and lowest when the substrate moves away from the active targets. In this work, a method of controlling the rotational speed (i.e., slower speed in front of active targets and faster speed in front of inactive targets in a revolution) of a substrate table installed in a magnetron sputtering chamber has been developed in order to improve the deposition rate of a multicomponent TiN+MoSx coating. The mechanical and tribological properties of TiN+MoSx coating have also been characterised to assess the beneficial effects of adding solid lubricant (MoS2) in hard TiN coating.
AB - Physical Vapour Deposition (PVD) technology, particularly magnetron sputtering process, enjoys the competitive advantages of depositing different new generation coatings (e.g., multicomponent, multilayer, graded, composite etc.) on three-dimensional objects (substrate) with excellent mechanical and tribological properties. In an industrial-scale sputtering chamber with a limited number of active magnetron sources (target) on the chamber wall, the density of coating species from different sources would not be uniform everywhere around the chamber. As a result, at a constant speed of rotating substrate table in a single revolution, the instantaneous deposition rate will be highest in front of the active targets and lowest when the substrate moves away from the active targets. In this work, a method of controlling the rotational speed (i.e., slower speed in front of active targets and faster speed in front of inactive targets in a revolution) of a substrate table installed in a magnetron sputtering chamber has been developed in order to improve the deposition rate of a multicomponent TiN+MoSx coating. The mechanical and tribological properties of TiN+MoSx coating have also been characterised to assess the beneficial effects of adding solid lubricant (MoS2) in hard TiN coating.
KW - deposition rate
KW - magnetron sputtering
KW - substrate rotation
U2 - 10.4028/www.scientific.net/AMR.83-86.977
DO - 10.4028/www.scientific.net/AMR.83-86.977
M3 - Article
SN - 1022-6680
VL - 83-86
SP - 977
EP - 984
JO - Advanced Materials Research
JF - Advanced Materials Research
ER -