Abstract
Optical tweezers are a highly versatile tool for exploration of the mesoscopic world, permitting non-contact manipulation of nanoscale objects. However, direct illumination with intense lasers restricts their use with live biological specimens, and limits the types of materials that can be trapped. Here we demonstrate an indirect optical trapping platform which circumvents these limitations by using hydrodynamic forces to exert nanoscale-precision control over aqueous particles, without directly illuminating them. Our concept is based on optically actuated micro-robotics: closed-loop control enables highly localised flow-fields to be sculpted by precisely piloting the motion of optically-trapped micro-rotors. We demonstrate 2D trapping of absorbing particles which cannot be directly optically trapped, stabilise the position and orientation of yeast cells, and demonstrate independent control over multiple objects simultaneously. Our work expands the capabilities of optical tweezers platforms, and represents a new paradigm for manipulation of aqueous mesoscopic systems.
Original language | English |
---|---|
Article number | 1215 |
Pages (from-to) | 1215 |
Number of pages | 10 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
Early online date | 14 Mar 2019 |
DOIs | |
Publication status | Published - 14 Mar 2019 |
Keywords
- Optical manipulation and tweezers
- Optofluidics
- fluid dynamics