Influence of reaction conditions on the properties of solution-processed Cu2ZnSnS4 nanocrystals

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
44 Downloads (Pure)

Abstract

Cu2ZnSnS4 nanocrystals were fabricated by hot injection of sulphur into a solution of metallic precursors. By careful control of the reaction conditions it was possible to control the elemental composition of the nanocrystals such that they are suitable for earth abundant photovoltaic absorbers. When the reaction temperature increased from 195 oC to 240 oC the energy band gap of the nanocrystals decreased from 1.65 eV to 1.39 eV. This variation is explained by the identification of a mixed wurtzite-kesterite phase at lower reaction temperatures and secondary phase Cu2SnS3 at higher temperatures. Moreover, the existence of wurtzite structure depends critically on the reaction cooling rate. The reaction time was also found to have a strong effect on the nanocrystals which became increasingly copper poor and zinc rich as the reaction evolved. As the reaction time increase from 15 minutes to 60 minutes, the energy band gap increased from 1.42 eV to 1.84 eV. This variation is discussed in terms of the sample doping. The results demonstrate the importance of optimising the reaction conditions to produce high quality Cu2ZnSnS4 nanocrystals.
Original languageEnglish
Pages (from-to)045040
JournalMaterials Research Express
Volume1
Issue number4
DOIs
Publication statusPublished - 28 Nov 2014

Keywords

  • CZTS
  • photovoltaics
  • composition
  • wurtzite
  • kesterite

Fingerprint

Dive into the research topics of 'Influence of reaction conditions on the properties of solution-processed Cu2ZnSnS4 nanocrystals'. Together they form a unique fingerprint.

Cite this