Insights into activators on biomass-derived carbon-based composites for electrochemical energy storage

Shun Lu, Ling Fang, Xi Wang, Terence Liu*, Xianhui Zhao, Ben Bin Xu, Qingsong Hua, Hong Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Biomass-derived carbon materials are now an essential source of carbon electrodes for high-performance supercapacitors due to their cost-effectiveness and abundant heteroatom self-doping properties. When preparing porous carbon materials from biomass for supercapacitor use, the use of activators can significantly increase the specific surface area of carbon materials, enhance pore structures, introduce more heteroatoms, promote the generation of various functional groups, and play a crucial role in the capacitance performance of biomass-derived carbon materials. However, the role of activators during the activation process has been overlooked in previous work focused on improving supercapacitor capacitance performance. In addition, there is a lack of comprehensive reviews summarizing the role of activators. Therefore, this work classifies the types of activators, discusses their activation mechanisms, operability, economy, and environmental friendliness, and proposes future development directions for activators. The main mixing methods of activators and carbon materials are also demonstrated, highlighting the advantages and disadvantages of each method. This work could provide valuable insights for the development of activators for high-performance supercapacitors.
Original languageEnglish
Article number101988
Number of pages18
JournalMaterials Today Chemistry
Volume37
Early online date5 Mar 2024
DOIs
Publication statusPublished - 1 Apr 2024

Keywords

  • Activation mechanisms
  • Activators
  • Biomass
  • Porous carbon
  • Supercapacitors

Cite this