Projects per year
Abstract
Thin film fabrication is of great importance in modern engineering. Here, we propose a universal and conformal thin film technique enabled by the wetting empowered interfacial self-assembly. By tailoring the contact angle of nanoparticle (NP), a NP monolayer can be assembled instantly (within 5 seconds) with an excellent harvesting efficiency (up to 97.5 weight %). This self-assembly strategy presents a universal applicability on various materials, e.g., nonmetal, metal, and core-shell structures, and can achieve a monolayer with same in-plane area as a 95 cm2 wafer in a single process, indicating great potential for scale-up manufacturing. Through a template transfer, we coat the surface of different substrates (plastic, paper, etc.) with the assembled film in a conformal and nondestructive "lift-on"manner and subsequently demonstrate fluorescent micropatterns. This self-assembly strategy has great implications in advancing thin film technology in a user-friendly and cost-effective fashion for applications in anti-counterfeiting, actuators, and wearable/flexible electronics.
Original language | English |
---|---|
Article number | eabk2852 |
Number of pages | 9 |
Journal | Science advances |
Volume | 7 |
Issue number | 52 |
DOIs | |
Publication status | Published - 22 Dec 2021 |
Fingerprint
Dive into the research topics of 'Instant Interfacial Self-Assembly for Homogeneous Nanoparticle Monolayer Enabled Conformal ‘lift on’ Thin Film Technology'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Stimuli-responsive gel based microfluidic switch
Xu, B. B. (PI)
Engineering and Physical Sciences Research Council
1/10/15 → 30/07/17
Project: Research