Abstract
Icing, fogging, and frosting cause safety hazards, reduced energy efficiency, and operation difficulties in various sectors including aerospace and renewable energy. Traditional methods for mitigating these hazards are often based on active transducers that are either inconvenient, energy intensive, or utilizing chemicals that are detrimental to the environment and lacking long-term stability. To tackle the challenges of in situ monitoring and mitigating fogging and icing hazards on structural surfaces, we explored an integrated platform by combining electromagnetic (EM) metamaterials and piezoelectric thin film-based surface acoustic wave (SAW) technologies. Icing monitoring was performed using EM metamaterial based on SAW electrodes with advantages of wireless and non-contact detection, and effective de-icing functions were achieved through harnessing mechanical vibrations, acousto-thermal, and acoustic streaming effects generated by the SAWs. This integrated platform is modular and scalable up for practical applications requiring fogging/icing detection and prevention systems. Our results have shown that the resonant frequency of the metamaterial device was decreased with accumulation of condensation on the surface of the device, which showed the fulfillment of sensing and monitoring. Results also showed that as the applied SAW power was increased, the time taken for de-fogging and de-icing were significantly decreased.
Original language | English |
---|---|
Article number | 021402 |
Number of pages | 12 |
Journal | Applied Physics Reviews |
Volume | 12 |
Issue number | 2 |
Early online date | 2 Apr 2025 |
DOIs | |
Publication status | E-pub ahead of print - 2 Apr 2025 |
Keywords
- surface acoustic wave
- rime ice
- phase change
- icing technology
- frequency shift