Abstract
A key issue for enhancing performance of hydrogen evolution reaction (HER) by utilizing seawater for sustainable clean energy is to develop a highly efficient, stable and economical electrocatalyst. Herein, a uniquely hierarchical nanostructure of CoNiSe2 nanorod-arrays (NRAs) integrated onto N-doped sea-sponge-carbon spheres (CoNiSe2/N-SSCSs) was designed and synthesized using successive ultrasonic spray pyrolysis (USP) and solvothermal - hydrothermal selenization (SHS) processes. Attributed to intrinsic HER activity of CoNiSe2 NRAs together with effective electron-transfer and ion-diffusion pathways of N-SSCSs, the CoNiSe2/N-SSCSs nanocomposites exhibited highly stable HER electrocatalytic performances in both alkaline electrolytes and alkaline simulated seawater. The required overpotential is as low as 88 mV with a Tafel slope of 83 mV dec−1 at 10 mA cm−2 in 1.0 M KOH, which are comparable to the electrode of commercial Pt/C (η10 = 35 mV & b = 58 mV dec−1).
Original language | English |
---|---|
Article number | 137335 |
Number of pages | 8 |
Journal | Chemical Engineering Journal |
Volume | 446 |
Issue number | 4 |
Early online date | 1 Jun 2022 |
DOIs | |
Publication status | Published - 15 Oct 2022 |
Keywords
- CoNiSe nanorod-arrays
- Electrocatalysis
- Hydrogen evolution reaction
- Sea-sponge-C
- Seawater